If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+5x-4=0
a = 16; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·16·(-4)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{281}}{2*16}=\frac{-5-\sqrt{281}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{281}}{2*16}=\frac{-5+\sqrt{281}}{32} $
| -6(n-5)=-3(n-4) | | 0.5x=0.6x=5 | | D=2y+8y-3 | | X^3-12x^2+36x-36=0 | | √x=0.5*x-15 | | 5x2=-2x | | 19+14+1x+-21=180 | | 4p+3=-1 | | --7=12+3x | | -|6x+1|=11 | | 1/2x+2/3x=5 | | -8(4b-2)=7-5(1+5b) | | -1/5+4/9a=2/15 | | z-4/5=-13/20 | | 5.3a–7.9=2.6a+2.9 | | 5a+10=75 | | √x-0.5*x+15=0 | | 9+4g;g=-3 | | 6a+5a=−11 | | -4/x-4=2/x+4 | | 6g-18=96 | | 3x-30+1x+1x=180 | | b-9=6b=22 | | 8(x+3)=2x-6 | | 10x=10,000,000 | | X-76=x | | (2x+1)^2+(x+1)^2=6x+47 | | 8x-4=2(x+1) | | 0=1/2*x^2+x-2 | | 9x+7=4x+12 | | 1/2x+6=2x+12 | | 8q+6;q=2 |